IIT JAM - MATHEMATICS

Paper Specific Instructions

1. The examination is of 3 hours duration. There are a total of 60 questions carrying 100 marks The entire paper is divided into three sections \mathbf{A}, \mathbf{B} and \mathbf{C}.
All sections are compulsory. Question in each section are of different types.
2. Section - A contains a total of 30 Multiple Choice Questions (MCQs).

Each MCQ type question has four choices out of which only one choice is the correct answer. Question Q. $1-$ Q. 30 belong to this section and carry a total of 50 marks. Q. 1 - Q. 10 carry 1 mark each and Questions Q. 11 - Q. 30 carry 2 marks each?
3. Section - B contains a total of $\mathbf{1 0}$ Multiple Select Questions (MSQ).

Each MSQ type question is similar to MCQ but with a difference that there may be
one or more than one choice(s) that are correct out of the four given choices.
The candidate gets full credit if he/she selects all the correct answers only and no wrong answers. Questions Q. $31-\mathrm{Q} .40$ belong to this section and carry 2 marks each with a total of 20 marks.
4. Section - C contains a total of 20 Numerical Answer Type (NAT) questions.

For these NAT type questions, the answer is a real number which needs to be entered using the virtual keyboard on the monitor. Nochoices will be shown for these type of questions. Questions Q. 41 - Q. 60 belong to this section and carry a total of 30 marks.
Q. 41 - Q. 50 carry 1 mark each and Question Q. 51 - Q. 60 carry 2 marks each.
5. In all sections, questions wot attempted will result in zero mark. In Section - A (MCQ), wrong answer will result in NEGATIVE marks. For all 1 mark questions, $1 / 3$ marks will be deducted for each wrong answer. For all 2 marks question, $2 / 3$ marks will be deducted for each wrong answer. In Section - B
(MSQ), there is NO NEGATIVE and NO PARTIAL marking provisions.
There is NO NEGATIVE marking in Section - C (NAT) as well.
6. Only Virtual Scientific Calculator is allowed. Charts, graph sheets, tables, cellular phone or other electronic gadgets are NOT allowed in the examination hall.
7. The Scribble Pad will be provided for rough work.

Special Instructions/Useful Data

$\mathbb{N}=$ the set of all positive integers.
$\mathbb{Z}=$ the set of all integers.
$\mathbb{Q}=$ the set of rational numbers.
$\mathbb{R}=$ the set of real numbers.
$\mathbb{R}^{n}=$ then n-dimensional Euclidean space.
$\mathbb{C}=$ the set of complex numbers.
$\mathrm{M}_{n}(\mathbb{R})=$ the real vector space of all $n \times n$ matrices with entries in \mathbb{R}
$\mathrm{M}_{n}(\mathbb{C})=$ the complex vector space of all $n \times n$ matrices with entries in \mathbb{C}.
$\operatorname{gcd}(m, n)=$ the greatest common divisor of the integers m and n.
$M^{T}=$ the transpose of the matrix M.
$A-B=$ the complement of the set B in the set \mathbb{A}, that is, $\{x \in A: x \notin B\}$.
$\ln x=$ the natural logarithm of x (to the base e).
$|x|=$ the absolute value of x.
$y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}=$ the first, second and the third derivatives of the function y, respectively.
$\mathrm{S}_{n}=$ the symmetric group consisting of all permutations of $\{1,2, \ldots, n\}$.
$\mathbb{Z}_{n}=$ the additive group of integers modulo n.
$f \circ g$ is the composite function defined by $(f \circ g)(x)=f(g(x))$.

The phrase 'real vector space' refers to a vector space over \mathbb{R}.

MATHEMATICS

SECTION - A

Multiple Choice Questions (MCQs):

Q.1. to $Q .10$ carry one mark each

Q.1. Which of the following groups has a proper subgroup that is NOT cyclic?
(A) $\mathbb{Z}_{15} \times \mathbb{Z}_{77}$
(B) S_{3}
(C) $(\mathbb{Z},+)$
(D) ($0,+$)
Q.2. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
x & \text { if } & x=\frac{1}{n} \text { for } n \in \mathbb{N} \\
0 & \text { otherwise }
\end{array}\right. \\
& g(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in \mathbb{Q} \cap[0,1] \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then
(A) Both f and g are Riemann integrable
(B) f is Riemann integrable, g is not
(C) g is Riemann integrable, f is not
(D) Neither f nor g is Riemann integrable
Q.3. Let $f:\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ be given by $f(x)=\frac{\pi}{2}+x-\tan ^{-1} x$. Consider the following statements:

P: $|f(x)-f(y)|<|x-y|$, for all $x, y \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
Q: $\quad f$ has a fixed point.
Then
(A) Both P and Q are TRUE
(B) P is TRUE and Q is FALSE
(C) P is FALSE and Q is TRUE
(D) Both P and Q are FALSE
Q.4. Find the real number α such that the differential equation
$\frac{d^{2} y}{d x^{2}}+2(\alpha-1)(\alpha-3) \frac{d y}{d x}+(\alpha-2) y=0$ has a solution $y(x)=a \cos (\beta x)+b \sin (\beta x)$ for some non zero reals a, b and β.
(A) $\quad \alpha=1$
(B) $\quad \alpha=2$
(C) $\alpha=3$
(D) $\quad \alpha=4$
Q.5. If $a+b+c=0$, then
(A) $3 a x^{2}+2 b x+c=0$ for at least one $x \in(0,1)$
(B) $3 a x^{2}+2 b x+c=0$ for at least one $x \in(1,2)$
(C) $3 a x^{2}+2 b x+c=0$ for at least one $x \in(-1,0)$
(D) $3 a x^{2}+2 b x+c \neq 0$ for any $x \in \mathbb{R}$
Q.6. Let f be bounded on $[a, b]$ and p be any partition of $[a, b]$, then
(A) $\int_{\underline{a}}^{b} f \leq \mathrm{L}(f, p) \leq \mathrm{U}(f, p) \leq \int_{a}^{\bar{b}} f$
(B) $\quad \mathrm{L}(f, p) \leq \int_{\underline{a}}^{b} f \leq \int_{a}^{\bar{b}} f \leq U(f, p)$
(C) For any partition p^{*} such that $p \subseteq p^{*}$ we have $U(f, p) \leq U\left(f, p^{*}\right)$
(D) For any partition p^{*} such that $p \subseteq p^{*}$ we have $L\left(f, p^{*}\right) \leq L(f, p) \leq U(f, p) \leq U\left(f, p^{*}\right)$
Q.7. If $[$.$] is the G.I.F. then \int_{-2}^{2}\left[x^{2}\right] d x$
(A) $\sqrt{5}-\sqrt{3}-\sqrt{2}$
(B) $5-\sqrt{3}-\sqrt{2}$
(C) $\sqrt{5}-\sqrt{3}-2$
(D) $\sqrt{5}-3-\sqrt{2}$
Q.8. Find out the false statement:
(A) f is \uparrow, g is $\uparrow \Rightarrow f+g$ is \uparrow
(B) f is \downarrow, g is $\uparrow \Rightarrow g \circ f$ is \downarrow
(C) f is \downarrow, g is $\downarrow \Rightarrow g$ of is \uparrow
(D) f is \downarrow, g is $\downarrow \Rightarrow f g$ is \uparrow
Q.9. Suppose $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ are two bounded sequences of real numbers.

Which of the following is true?
(A) $\lim _{n \rightarrow \infty} \sup \left(a_{n}+(-1)^{n} b_{n}\right)=\lim _{n \rightarrow \infty} \sup a_{n}+\left|\lim _{n \rightarrow \infty} \sup b_{n}\right|$
(B) $\lim _{n \rightarrow \infty} \sup \left(a_{n}+(-1)^{n} b_{n}\right) \leq \lim _{n \rightarrow \infty} \sup a_{n}+\lim _{n \rightarrow \infty} \sup b_{n}$
(C) $\lim _{n \rightarrow \infty} \sup \left(a_{n}+(-1)^{n} b_{n}\right) \leq \lim _{n \rightarrow \infty} \sup a_{n}+\left|\lim _{n \rightarrow \infty} \sup b_{n}\right|+\left|\lim _{n \rightarrow \infty} \inf b_{n}\right|$
(D) $\lim _{n \rightarrow \infty} \sup \left(a_{n}+(-1)^{n} b_{n}\right)$ may not exist
Q.10. Suppose A and B are similar real matrices, that is, there exists an invertible matrix S such that $A=S B S^{-1}$.

Which of the following need not be true?
(A) Transpose of A is similar to the transpose of B
(B) The minimal polynomial of A is same as the minimal polynomial of B
(C) $\operatorname{Trace}(A)=\operatorname{Trace}(B)$
(D) Eigenvectors of A and Eigenvectors of B are same

Q.11- Q. 30 Carry Two Marks Each

Q.11. Let A be an invertible 5×5 matrix over a field F. Suppose that characteristic polynomials of A and A^{-1} are the same.

Which of the following is necessarily true?
(A) $\operatorname{det}(A)^{2}=1$
(B) $\operatorname{det}(A)^{5}=1$
(C) $\operatorname{trace}(A)^{2}=1$
(D) $\operatorname{trace}(A)^{5}=1$
Q.12. Let G be a simple group of order 168 . How many elements of order 7 does it have?
(A) 6
(B) 7
(C) 48
(D) 56
Q.13. The value of $\int_{0}^{4 \pi}|\sin x| d x$ is
(A) 8
(B) -8
(C) 2
(D) -2
Q.14. The quotient group $\mathbb{Q}(8) /\{1,-1\}$ is isomorphic to
(A) $(\mathbb{Q}(8), \cdot)$
(B) $(\{1,-1\}, \cdot)$
(C) $\left(\mathrm{V}_{4},+\right)$
(D) $\left(\mathbb{Z}_{4},+\right)$
Q.15. Let V denote the vector space $\mathrm{C}^{5}[a, b]$ over \mathbb{R} and $\mathrm{W}=\left\{f \in \mathrm{~V}: \frac{d^{4} f}{d t^{4}}+2 \frac{d^{2} f}{d t^{2}}-f=0\right\}$. Then
(A) $\operatorname{dim}(\mathrm{V})=\infty$ and $\operatorname{dim}(\mathrm{W})=\infty$
(B) $\operatorname{dim}(\mathrm{V})=\infty$ and $\operatorname{dim}(\mathrm{W})=4$
(C) $\operatorname{dim}(\mathrm{V})=6$ and $\operatorname{dim}(\mathrm{W})=5$
(D) $\operatorname{dim}(\mathrm{V})=5$ and $\operatorname{dim}(\mathrm{W})=4$
Q.16. Which one of the following groups is simple?
(A) S_{3}
(B) $\quad \mathrm{GL}(2, \mathrm{R})$
(C) $Z_{2} \times Z_{2}$
(D) A_{5}
Q.17. Let $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}, \mathrm{M}=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right), \mathrm{N}=\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{2}\end{array}\right)$ and $\mathrm{G}=\langle\mathrm{M}, \mathrm{N}\rangle$ be the group generated by the matrices M and N under matrix multiplication. If C_{n} be the cyclic grouṕof order n, up to isomorphism, then
(A) $\mathrm{G} / \mathrm{Z}(\mathrm{G}) \cong \mathrm{C}_{6}$
(B) $\quad \mathrm{G} / \mathrm{Z}(\mathrm{G}) \cong \mathrm{S}_{3}$
(C) $\quad \mathrm{G} / \mathrm{Z}(\mathrm{G}) \cong \mathrm{C}_{2}$
(D) $\bar{G} Z(\mathrm{G}) \cong \mathrm{C}_{4}$
Q.18. Let $f(x)=x^{5}-5 x+2$. Then
(A) f has no real root
(B) f has exactly one real root
(C) f has exactly three real roots
(D) All roots of f areseal
Q.19. A particular solution of $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+\frac{y}{4}=\frac{1}{\sqrt{x}}$ is
(A) $\frac{1}{2 \sqrt{x}}$
(B) $\frac{\log x}{2 \sqrt{x}}$
(C) $\frac{(\log x)^{2}}{2 \sqrt{x}}$
(D) $\frac{(\log x) \sqrt{x}}{2}$
Q.20. Consider the improper Riemann integral $\int_{0}^{x} y^{-1 / 2} d y$. This integral is:
(A) Continuous in $[0, \infty)$
(B) Continuous only in (0, ∞)
(C) Discontinuous in (0, ∞)
(D) Discontinuous only in $\left(\frac{1}{2}, \infty\right)$
Q.21. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a nonsingular linear transformation of a finite dimensional vector space V to any vector space W. Which of the following is true?
(A) $\operatorname{dim} V \leqslant$ Rank of T
(B) $\operatorname{dim} V=$ Rank of T
(C) T maps a basis of V to a basis of W
(D) $\operatorname{dim} V>$ Rank of T
Q.22. Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map defined by $\mathrm{T}(x, y)=(2 x-7 y, 4 x+3 y)$.

The matrix of T with respect to the ordered basis $B=\{(1,3),(2,5)\}$ is
(A) $\left[\begin{array}{cc}121 & 201 \\ -70 & -116\end{array}\right]$
(B) $\left[\begin{array}{cc}-121 & 201 \\ 70 & -116\end{array}\right]$
(C) $\left[\begin{array}{cc}-121 & 201 \\ 70 & 116\end{array}\right]$
(D) $\left[\begin{array}{cc}-121 & -201 \\ 70 & 116\end{array}\right]$
Q.23. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{lll}
1 / 2 & \text { if } & x=1 / 4 \\
1 / 4 & \text { if } & x=1 / 2 \\
0 & \text { if } & x \in[0,1] \backslash\{1 / 4,1 / 2\}
\end{array}\right.
$$

Then
(A) f is Riemann integrable and $\int_{0}^{1} f(x) d x=3 / 4$
(B) f is Riemann integrable and $\int_{0}^{1} f(x) d x=1 / 4$
(C) f is Riemann integrable and $\int_{0}^{1} f(x) d x=0$
(D) f is not Riemann integrable.
Q.24. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}-x_{2}, 0\right)$.

If $N(T)$ and $R(T)$ denote the null space and the range space of T respectively, then
(A) $\quad \operatorname{dim} N(T)=2$
(B) $\quad \operatorname{dim} R(T)=2$
(C) $R(T)=N(T)$
(D) $N(T) \subset R(T)$
Q.25. Let $\left\{x_{n}\right\} b$ a sequence of positive numbers such that $\lim _{n \rightarrow \infty} x_{n}=x$, define

$$
z_{n}=\frac{1}{n}\left[x_{1}\left(1+\frac{x}{n}\right)^{n}+x_{2}\left(1+\frac{x}{n-1}\right)^{n-1}+\ldots+x_{n}(1+x)\right]
$$

Then
(A) $\left\{z_{n}\right\}$ converges to e^{x}
(B) $\left\{z_{n}\right\}$ converges to $x e^{x}$
(C) $\left\{Z_{n}\right\}$ does not have a limit
(D) $\left\{z_{n}\right\}$ converges to $x e$
Q. 26. Which one of the following statements is true?
(A) Exactly half of the elements in any even order subgroup of S_{5} must be even permutations
(B) Any abelian subgroup of S_{5} is trivial
(C) There exists a cyclic subgroup of S_{5} of order 6
(D) There exists a normal subgroup of S_{5} of index 7
Q.27. Let A be a 3×3 matrix and suppose that the matrix B is obtained from A by the following row operations
$R_{1} \leftrightarrow R_{2} ; R_{3} \rightarrow R_{3}+5 R_{2}$. If $\operatorname{det}(A)=8$, what is $\operatorname{det}(B) ?$
(A) 8
(B) -40
(C) 40
(D) -8
Q.28. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\cot \frac{y}{x}$ where c is a constant, is
(A) $\operatorname{cosec}(y / x)=c / x$
(B) $\operatorname{cosec}(y / x)=c x$
(C) $\sec (y / x)=c x$
(D) $\sec (y / x)=c / x$
Q.29. Consider the following statements

P : The differential equation $\frac{d y}{d x}=y, y(0)=0$ has a unique Solytion
Q: Let $y(x)$ be a real valued function defined on \mathbb{R} such that $y^{\prime}=y(1-y)$ with $y(0) \in[0,1]$ then $\lim _{x \rightarrow \infty} y(x)=1$

Then the correct option is
(A) P is true \& Q is true
(B) P is true but Q is false
(C) P is false but Q is true
(D) Neither P nor Q is true
Q.30. Let y be the solution of $y^{\prime}+y=|x| \quad x \in \mathbb{R}, y(-1)=0$, then $y(1)$ equals
(A) $\frac{2}{e}-\frac{2}{e^{2}}$
(B) $\frac{2}{e}+2 e^{2}$
(C) $2-\frac{2}{e}$
(D) $2-2 e$

SECTION - B

Multiple Select Questions

Q.31. to Q. 40 carry Two marks each

Q.31. Let $\sum_{\sum_{n=1}^{\infty}} a_{n} x^{n}$ converges at $x=-3$ but diverges at $x=-4 \& \sum_{n=1}^{\infty} b_{n} x^{n}$ converges at $x=3$ but diverges at $x=4$, then
(A) $\sum_{n=1}^{\infty} a_{n}$ converges
(B) $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges
(C) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges
(D) $\sum_{n=1}^{\infty} b_{n}$ converges
Q.32. For $z=x+i y \in \mathbb{C}$ define $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(z)=\sqrt{|\operatorname{Re}(z)||\operatorname{Im}(z)|}$, then
(A) $\lim _{z \rightarrow 0} f(z)=0$
(B) f is differentiable at 0
(C) f is continuous at 0
(D) f is not differentiable at 0
Q.33. Consider the functions f and g given by $f(x)=x^{5}+2 x^{3}+1 \& g(x)=x^{3}+\sin (x)+1$ then
(A) f is onto
(B) $g(\alpha)=0$ for some $\alpha e^{\prime} R$
(C) $f(\alpha)=f(\beta)$ for some $\alpha \neq \beta$ in \mathbb{R}
(D) $\lim _{x \rightarrow 0} \frac{g(x)-1}{x}$ is figite \& non zero
Q.34. Which of the following is/are correct
(A) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x^{6}-2 x^{2} y-x^{4} y+2 y^{2}$ has a saddle point at $(0,0)$
(B) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $g(x, y)=\left(e^{x} \cos y, e^{x} \sin x\right)$ is injective
(C) Suppose $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $|h(x, y)| \leq x^{2}+y^{2} \quad \forall(x, y) \in \mathbb{R}^{2}$, then h is continuous at $(0,0)$
(D) Suppose $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is definéd by $p(x, y)=\left\{\begin{array}{ll}|x| & x \neq 0 \\ |y| & x=0\end{array}\right.$, then $p(x, y)=0$ if $\&$ only if

$$
x=y=0
$$

Q.35. Which of the given sequences $\left(a_{n}\right)$ satisfy the following identity ?
$\lim _{n \rightarrow \infty} \sup a_{n}=-\lim _{n \rightarrow \infty} \inf a_{n}$
(A) $a_{n}=1 / n$ for n
(B) $a_{n}=(-1)^{n}(1+1 / n)$ for all n
(C) $a_{n}=1+\frac{(-1)^{n}}{n}$ for all n
(D) $a_{n}=\left(e^{n}+\pi^{n}\right)^{\frac{1}{n}}$
Q.36. Consider the statement " $\exists \alpha \in(0,1)$ such that $\left|a_{n+2}-a_{n+1}\right| \leq \alpha\left|a_{n+1}-a_{n}\right| \quad \forall n$ then a possible sequence $\left\{a_{n}\right\}$ is/are given by
(a) $a_{n+1}=\frac{1}{7}\left(a_{n}{ }^{3}+2\right), \quad a_{1}=\frac{1}{2}$
(b) $a_{n+2}=\frac{1}{2}\left(a_{n}+a_{n+1}\right), \quad 0<a_{1}<a_{2}$
(c) $a_{n}=1+r+r^{2} \ldots \ldots \ldots+r^{n}, \quad 0<r<1$
(d) $a_{n+1}=\left(1-\frac{1}{2 n}\right) x_{n}+\frac{1}{2 n} x_{n-1}, \quad x_{1}=\frac{1}{2}$
Q.37. For $t \in \mathbb{R}$, let [t] denote the greatest integer less than or equal to t.

Define function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x, y)= \begin{cases}\frac{-1}{x^{2}-y} & \text { if } x^{2} \neq y \\ 0 & \text { if } x^{2} 5 y\end{cases}$
and $g(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
Then which of the following is/are TRUE?
(A) $\lim _{(x, y) \rightarrow(\sqrt{2}, \pi)} \cos \left(\frac{x^{2} y}{x^{2}+1}\right)=\frac{-1}{2}$
(B) $\lim _{(x, y) \rightarrow(\sqrt{\sqrt{3}(2) 2}} e^{y_{n}(x, y)}=0$
(C) $\lim _{(x, y) \rightarrow(e, e)} \ln \left(x^{y-[y]}\right)=e-2$
(D) $\bigcup_{(x, y) \rightarrow(0,0)} e^{2 y} g(x)=1$
Q.38. Consider the four functions from \mathbb{R} to \mathbb{R}
$f_{1}(x)=x^{4}+3 x^{3}+7 x+1$,
$f_{2}(x)=x^{3}+3 x^{2}+4 x$,
$f_{3}(x)=\arctan (x)$ and
$f_{4}(x)= \begin{cases}x & \text { if } x \notin \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}$
Which of the following statements are correct?
(A) The range of f_{1} is a proper subset of range of f_{2}
(B) The range of f_{2} is a proper subset of range of f_{3}
(C) The range of f_{4} is not an interval
(D) f_{2} is onto
Q.39. Let $\mathrm{y}: \mathbb{R} \rightarrow \mathbb{R}$ be solution of the ordinary differential equation,
$2 y^{\prime \prime}+3 y^{\prime}+y=e^{-3 x}, x \in \mathbb{R}$ satisfying $\lim _{x \rightarrow \infty} e^{x} y(x)=0$. Then
(A) $\lim _{x \rightarrow \infty} e^{2 x} y(x)=0$
(B) $y(0)=1 / 10$
(C) y is a bounded function on \mathbb{R}
(D) $y(1)=0$
Q.40. For each integer n, define $f_{n}(x)=x+n, x \in \mathbb{R}$ and let $G=\left\{f_{n} \mid n \in \mathbb{Z}\right\}$.

Then
(A) G is a cyclic group under composition
(B) G is a non cyclic group under composition
(C) G is not a group under composition
(D) G is a non abelian group under composition

SECTION - C

Numerical Answer Type Questions

Q.41. to Q. 50 carry One mark each

Q.41. The coefficient of $(x-1)^{5}$ in the Taylor expansion about $x=1$ of the function $\mathrm{F}(x)=\int_{1}^{x} \frac{\log _{e} t}{t+1} d t, \quad 0<x<2 \quad$ is $\ldots \ldots \ldots$ (correct up to two decimal places)
Q.42. Let $u_{n}=\frac{n!}{1,3.5 \ldots(2 n-1)}$, Then $\lim _{n \rightarrow \infty} u_{n}$ is equal to \qquad
Q.43. The maximum value of $f(x, y)=49-x^{2}-y^{2}$ on the line $x+3 y=10$ is \qquad .
Q.44. Volume of solid that lies under the cone $z^{2}=x^{2}+y^{2}$ above $x y$ plane and inside the cylinder $x^{2}+y^{2}=2 x$ is \qquad .
Q.45. Volume bounded by the paraboloid $x^{2}+y^{2}=1+z$ and $z=0$ is \qquad .
Q.46. Let M be a 3×3 real matrix such that $M^{2}=2 M+3 I$. If the determinant of M is -9 , then the trace of M equals \qquad .
Q.47. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear map such that the null space of T is
$\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+y+z+w=0\right\}$ and the rank of $\left(T-4 \mathbf{I}_{4}\right)$ is 3 .

If the minimal polynomial of T is $x(x-4)^{\alpha}$, then α is equal to \qquad .
Q.48. Consider the vector space $V=\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{i} \in \mathbb{R}\right.$ for $\left.i=0,1,2,\right\}$ of polynomials of degree at most 2. Let $f: V \rightarrow \mathbb{R}$ be a linear functional such that $f(1+x)=0, f\left(1-x^{2}\right)=0$ and $f\left(x^{2}-x\right)=2$. Then $f\left(1+x+x^{2}\right)$ equals \qquad .
Q.49. Consider the expansion of the function $f(x)=\frac{3}{(1-x)(1+2 x)}$ in powes of x ithat is valid in $|x|<\frac{1}{2}$. Then the coefficient of x^{4} is \qquad
Q.50. If f is an odd function, then the value of integral
$\int_{-\pi}^{\pi} \frac{f(\sin x)}{f(\cos x)+f\left(\sin ^{2} x\right)} d x$ is

Q.51. to Q. 60 carry two mark each

Q.51. The number of distinct subgroups of \mathbb{Z}_{999} is \qquad .
Q.52. The number of subgroup of $\mathbb{Z}_{7} \times \mathbb{Z}_{7}$ of order 7 is \qquad .
Q. 53. The number of elements of order 12 in the symmetric group S_{7} is equal to \qquad .
Q.54. The sum of the series $\sum_{n=1}^{\infty} \frac{1}{(4 n-3)(4 n+1)}$ is equal to \qquad
(Rounded off to two decimal places)
Q.55. If $f:[0, \infty) \rightarrow \mathbb{R}$ and $g:[0, \infty) \rightarrow[0, \infty)$ are continuous functions such that $\int_{0}^{x^{3}+x^{2}} f(t) d t=x^{2}$ and $\int_{0}^{g(x)} t^{2} d t=9(x+1)^{3}$ for all $x \in[0, \infty)$, then the value of $f(2)+g(2)+16 f(12)$ is equal to (Rounded off to two decimal places)
Q.56. Let $\alpha=\int_{x=0}^{4} \int_{y=\sqrt{4-x}}^{2} e^{y^{3}} d y d x$, then the value of $3 \alpha-e^{8}$ is equal to \qquad .
Q.57. Consider the differential equation $\frac{d y}{d x}+2022 y=f(x), x>0$, where $f(x)$ is continuous function such that that $\lim _{x \rightarrow-\infty} f(x)=2022$, then $\lim _{x \rightarrow \infty} y(x)=$ \qquad .
Q.58. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq \pi, \min \{\sin x, \cos x\} \leq y \leq \max \{\sin x, \cos x\}\right\}$.

If α is the area of S, then the value of $2 \sqrt{2} \alpha$ is equal to \qquad
Q.59. The number of real roots of the polynomial $f(x)=x^{11}-13 x+5$ is
Q.60. Let $\phi:(-1,1) \rightarrow \mathbb{R}$ be defined by $\phi(x)=\int_{x^{7}}^{x^{4}} \frac{1}{1+t^{3}} d t$. If $\alpha=\lim _{x \rightarrow 0} \frac{\phi(x)}{e^{2 x^{4}}-1}$, then 42α is equal to

END OFTHE QUESTION PAPER

MATHEMATICS : ANSWER KEY

Section-A
(Multiple Choice Questions)(MCQ)

Section-B

(Multiple Selection Questions)(MSQ)

31. (A, B, C, D)	32. (A, C, D)	33. (A, B, D)	34. (A, C, D)	35. (A, B)
36. (A, B, C, D)	37. (A, C, D)	38. (A, C, D)	39. (A, B)	40. (A, B, D)

Section-C

(Numerical Answers Type)(NAT)

$41 .(0.04)$	$42 .(0)$	$43 .(39)$	$44 .(3.55)$	$45 .(1.57)$
$46 .(5)$	$47 .(1)$	$48 .(1)$	$49 .(33$ to 33$)$	$50 .(0)$
$51 .(8)$	$52 .(8)$	$53 .(420$ to 420$)$	$54 .(0.25)$	$55 .(13.4)$
$56 .(-1)$	$57 .(1)$	$58 .(8)$	$59 .(3)$	$60 .(21)$

