- 1. Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers such that $x_n \leq y_n$ for all $n \geq N$, where N is some positive integer. Consider the following statements:
 - (a) $\liminf_{n \to \infty} x_n \leq \liminf_{n \to \infty} y_n$.
 - (b) $\limsup_{n \to \infty} x_n \leq \limsup_{n \to \infty} y_n$.

Which of the above statements is(are) correct?

- 1. Neither (a) nor (b).
- 2. Only (a).
- 3. Only (b).
- 4. Both (a) and (b).
- 2. Which of the sequences $\{a_n\}$ and $\{b_n\}$ of real numbers with *n*-th terms

$$a_n = \frac{(n^2 + 20n + 35)\sin n^3}{n^2 + n + 1}, \quad b_n = 2\cos n - \sin n$$

has(have) convergent subsequences?

- 1. Neither $\{a_n\}$ nor $\{b_n\}$.
- 2. Only $\{a_n\}$.
- 3. Only $\{b_n\}$.
- 4. Both $\{a_n\}$ and $\{b_n\}$.
- 3. Consider the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n+\sin n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{n}}$
(d) $\sum_{n=1}^{\infty} \sin n$

n=1

Which of the above series is(are) convergent?

- 1. All of (a), (b), (c) and (d).
- 2. Only (a), (c) and (d).
- 3. Only (a) and (c).
- 4. Only (c).
- 4. The union of infinitely many closed subsets of the real line is
 - 1. uncountable.
 - 2. finite.
 - 3. always closed.
 - 4. need not be closed.

5. Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \left(2 + \sin \frac{n\pi}{2}\right)r^n$, r > 0. What are the values of $\liminf_{n \to \infty} \frac{a_{n+1}}{a_n}$ and $\limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$? 1. r/2 and 2r. 2. r/3 and r. 3. 2r/3 and 3r/2. 4. 0 and 1. 6. Consider the following series:

(a)
$$\sum_{n=1}^{n=1} 3^{-n} \sin(3^n x)$$
 on \mathbb{R}
(b) $\sum_{n=1}^{\infty} 2^{-n} x^n$ on $(-2,2)$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$ on \mathbb{R}

n=1 ^{*n*} Which of the above series converge uniformly on the indicated domain?

- 1. Only (a) and (b).
- 2. Only (b) and (c).
- 3. Only (a) and (c).
- 4. All of (a), (b) and (c).
- 7. Let $\{f_n\}$ be a sequence of continuous functions on [a, b] converging uniformly to the function f. Consider the following statements:
 - (a) f is bounded on $[a, b]_{L}$
 - (b) $\lim_{n \to \infty} \int_{a}^{b} f_{n}(t)dt = \int_{a}^{b} f(t)dt.$ (c) If each f is differentiable, th

(c) If each f_n is differentiable, then the sequence $\{f'_n\}$ converges uniformly to f' on [a, b], f' is the derivative of f.

Which of the following statements is(are) correct?

- 1. Only (a) and (b)
- 2. Only (a) and (c)
- 3. Only (c).
- 4. Only (b).

8. Let G(x) be a real valued function defined by $G(x) = \int_{x^2}^{4x^2} \cos \sqrt{t} dt$. If G' is the derivative of G, then

- 1. $G'(\pi/2) = -4\pi$.
- 2. $G'(\pi/2) = -4\pi 1.$
- 3. $G'(\pi/2) = -\pi$.
- 4. $G'(\pi/2) = 0.$

$$f(x) = \begin{cases} (4 - x^2)^{5/2}, & |x| < 2\\ 0, & |x| \ge 2 \end{cases}.$$

Consider the following statements:

- (a) f is not continuous on $\mathbb R$
- (b) f is continuous on \mathbb{R} but not differentiable at x = 2, -2
- (c) f is differentiable on \mathbb{R} but f' is not continuous on \mathbb{R}
- (d) f is differentiable on $\mathbb R$ and f' is continuous on $\mathbb R$

Which of the above statements is(are) correct?

- 1. Only (a) and (d).
- 2. Only (b) and (c).
- 3. Only (c).
- 4. Only (d).

10. The zero of the function $f(x) = -2x^3 + 5x - 5$ defined on \mathbb{R} lie in the interval

- 1. (-1, 1).
- 2. [3, 4].
- 3. [-2, -1].
- 4. [-5, -3].

- 11. The Wronskian of $\cos x$, $\sin x$ and e^{-x} at x = 0 is
 - 1. 1.
 - 2. 2.
 - 3. -1.
 - 4. -2.

12. The solution of the initial value problem $y' = 1 + y^2$, y(0) = 1, is

- 1. $y = \csc(x + \pi/4)$.
- 2. $y = \tan(x + \pi/4)$.
- 3. $y = \sec(x + \pi/4)$.
- 4. $y = \cot(x + \pi/4)$.

13. How many solution(s) does the initial value problem $y' - \frac{2}{x}y = 0$, y(0) = 0 have?

- 1. No solution.
- 2. Unique solution.
- 3. Two solutions.
- 4. Infinitely many solutions.

14. The general solution of the equation $y'' + y = \operatorname{cosec} x$, $(0 < x < \pi)$, is $(c_1, c_2 \text{ are arbitrary constants})$

- 1. $c_1 \cos x + c_2 \sin x x \cos x + \sin x \ln(\sin x)$.
- 2. $c_1 \cos x + c_2 \sin x + x \cos x + \sin x \ln(\sin x)$.
- 3. $c_1 \cos x + c_2 \sin x x \sin x + \cos x \ln(\sin x)$.
- 4. $c_1 \cos x + c_2 \sin x + x \sin x + \cos x \ln(\sin x)$.

15. The particular integral of the differential equation $y'' + y = x^3$ is

1. $x^2 + 6x$. 2. $x^2 - 6x$. 3. $x^3 + 6x$. 4. $x^3 - 6x$.

16. The complete integral of the partial differential equation $p^2 z^2 + q^2 = 1$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ is (a, b are arbitrary constants)

1.
$$z + a^{2} \ln \left(\frac{z + \sqrt{z^{2} + a^{2}}}{a} \right) = 0.$$

2. $a^{2}z + by + x^{2} = 0.$
3. $z\sqrt{z^{2} + a^{2}} + a^{2} \ln \left(\frac{z + \sqrt{z^{2} + a^{2}}}{a} \right) = 2x + 2ay + 2b.$
4. $z^{2} + y^{2} = x^{2} + 2x + 2ay + 2b.$

17. The complete integral of the partial differential equation $z = px + qy - \sin(pq)$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, is

1. $z = ax + by + \sin(ab)$. 2. $z = ax + by - \sin(ab)$. 3. $z = ax + y + \sin b$. 4. $z = x + by - \sin a$.

18. The partial differential equation $yu_{xx} + 2xyu_{xy} + xu_{yy} = u_x + u_y$ is

- 1. hyperbolic in $\{(x, y) \mid 0 < xy < 1\}$.
- 2. hyperbolic in $\{(x, y) | xy > 1\}$.

- 3. elliptic in $\{(x, y) | xy > 1\}$.
- 4. elliptic in $\{(x, y) | xy < 0\}$.

19. The general solution of the equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = x - y$ is $(\phi_1, \phi_2 \text{ are arbitrary functions})$

1.
$$\frac{1}{4}x(x-y)^2 + \phi_1(x^2+y) + \phi_2(x-y).$$

2. $\frac{1}{4}x(x-y)^2 + \phi_1(x+y) + \phi_2(x-y).$
3. $\phi_1(x+y) + \phi_2(x^2-y).$
4. $\phi_1(x^2+y) + \phi_2(x^2-y) - \frac{1}{4}x(x+y).$

20. The solution of the partial differential equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with u(0,t) = u(2,t) = 0, $u(x,0) = \sin^3 \frac{\pi x}{2}$ and $u_t(x,0) = 0$ is

1.
$$\frac{3}{4}\sin\frac{\pi x}{2}\sin\frac{\pi ct}{2}$$
.
2. $\frac{3}{4}\sin\frac{\pi x}{2}\cos\frac{\pi ct}{2} - \frac{1}{4}\sin\frac{3\pi x}{2}\cos\frac{3\pi ct}{2}$.
3. $\frac{3}{4}\cos\frac{\pi x}{2}\sin\frac{\pi ct}{2} - \frac{1}{4}\sin\frac{3\pi x}{2}\sin\frac{3\pi ct}{2}$.
4. $\frac{3}{4}\sin\frac{\pi x}{2}\cos\frac{\pi ct}{2} - \frac{1}{4}\cos\frac{3\pi x}{2}$.

21. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} (x^2 + y^2) \ln(x^2 + y^2), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

Then

- 1. f_{xy} and f_{yx} are continuous at (0,0), and $f_{xy}(0,0) = f_{yx}(0,0)$.
- 2. f_{xy} and f_{yx} are discontinuous at (0,0), but $f_{xy}(0,0) = f_{yx}(0,0)$.
- 3. f_{xy} and f_{yx} are continuous at (0,0), but $f_{xy}(0,0) \neq f_{yx}(0,0)$.
- 4. f_{xy} and f_{yx} are discontinuous at (0,0), and $f_{xy}(0,0) \neq f_{yx}(0,0)$.
- 22. The directional derivative of $f(x, y, z) = xy^2 + yz^2 + zx^2$ defined on \mathbb{R}^3 along the tangent to the curve $x = t, y = t^2, z = t^3$ at the point (1, 1, 1) is

1.
$$-\frac{18}{\sqrt{14}}$$
.
2. $\frac{13}{\sqrt{14}}$.
3. $-\frac{13}{\sqrt{14}}$.
4. $\frac{18}{\sqrt{14}}$.

- 23. The unique polynomial of degree 2 passing through (1, 1), (3, 27) and (4, 64) obtained by Lagrange interpolation is
 - 1. $8x^2 17x + 12$. 2. $8x^2 - 19x - 12$. 3. $8x^2 + 14x - 12$. 4. $8x^2 - 19x + 12$.
- 24. The approximate value of $\int_0^3 \frac{dx}{(1+x)^2}$ by Simpson's 1/3-rd rule, using the least number of equal subintervals, is

- $1. \ 0.8512.$
- $2. \ 0.8125.$
- 3. 0.7625.
- 4. 0.6702.
- 25. Consider the differential equation $\frac{dy}{dx} = y x$, y(0) = 2. The absolute value of the difference in the solutions obtained by Euler method and Runge–Kutta second order method at y(0.1) using step size 0.1 is
 - 1. 2.205
 - 2. 2.252
 - 3. 0.005
 - 4. 0.055
- 26. The approximate value of $(17)^{1/3}$ obtained after two iterations of Newton–Raphson method starting with initial approximation $x_0 = 2$ is
 - $1.\ 2.7566$
 - $2.\ 2.5826$
 - 3. 2.6713
 - 4. 2.4566
- 27. For an infinite discrete metric space (X, d), which of the following statements is correct?
 - 1. X is compact.
 - 2. for every $A \subseteq X$, $A^o \cup \overline{A} = X$, where \overline{A} and A^o denote respectively the closure and interior of A in X.
 - 3. X is connected.
 - 4. X is not totally bounded.
- 28. Consider the metric space (l_2, d) of square summable sequences in \mathbb{R} with the Euclidean metric. Let $Y = \{e_1, e_2, \ldots\} \subseteq l_2$, where e_i is the sequence of 1 at the *i*-th place and 0 elsewhere. Then
 - 1. \boldsymbol{Y} is not compact and has no limit point.
 - 2. Y is compact and each e_i is a limit point of Y.
 - 3. Y is not compact and has a limit point.
 - 4. Y is compact and has no limit point.
- 29. Let C[0,1] be the set of real valued continuous functions on [0,1] with the sup-metric. Let $A = \{f \in C[0,1] \mid f(0) = 0\}$ and $B = \{f \in C[0,1] \mid f(0) > 0\}$ be subspaces of C[0,1]. Then
 - 1. both A and B are complete.
 - 2. A is complete but B is incomplete.
 - 3. A is incomplete but B is complete.
 - 4. neither A nor B is complete.
- 30. Let (\mathbb{R}, d) and (\mathbb{R}, u) be metric spaces with the discrete metric d and the usual metric u respectively. Let $f: (\mathbb{R}, d) \longrightarrow (\mathbb{R}, u)$ and $g: (\mathbb{R}, u) \longrightarrow (\mathbb{R}, d)$ be functions given by

$$f(x) = g(x) = \begin{cases} 0, & x \le 0\\ x+1, & x > 0 \end{cases}.$$

Then

- 1. both f and g are continuous.
- 2. neither f nor g is continuous.
- 3. f is continuous but g is not.
- 4. g is continuous but f is not.

- 31. Let $Y_1 = \{(x, y) \in \mathbb{R}^2 \mid y = \sin \frac{1}{x}, \ 0 < x \le \pi\}$ and $Y_2 = \{(0, y) \in \mathbb{R}^2 \mid y \in [-2, 2]\}$ be subspaces of the metric space $(\mathbb{R}^2, d), d$ being the Euclidean metric. For any $A \subseteq \mathbb{R}^2, \overline{A}$ denotes the closure of A in \mathbb{R}^2 . Which of the following statements is correct?
 - 1. $\overline{Y_1} \cup Y_2$ is connected.
 - 2. $Y_1 \cup \overline{Y_2}$ is connected.
 - 3. $\overline{Y_1} \cap Y_2$ is disconnected.
 - 4. $\overline{Y_1 \cap Y_2}$ is a non-empty bounded subset of \mathbb{R}^2 .
- 32. Let R[0,1] be the set of all real valued Riemann integrable functions on [0,1] and let $f:[0,1] \longrightarrow \mathbb{R}$ be the function given by

$$f(x) = \begin{cases} 0, & \text{if } x = 0\\ \frac{1}{n}, & \text{if } \frac{1}{n+1} < x \le \frac{1}{n} \text{ for } n \in \mathbb{N} \end{cases}$$

Which of the following statements is correct?

- 1. f is monotonically decreasing on [0, 1] but $f \notin R[0, 1]$.
- 2. f is monotonically decreasing on [0, 1] and $f \in R[0, 1]$.
- 3. f is discontinuous at infinitely many points in [0, 1] but $f \notin R[0, 1]$.
- 4. f is discontinuous at infinitely many points in [0, 1] and $f \in R[0, 1]$.
- 33. The improper integral $\int_{-\infty}^{\infty} \frac{dx}{x^2+1}$
 - 1. converges to π .
 - 2. converges to $\pi/2$.
 - 3. converges to 0.
 - 4. diverges.

34. Consider the functions $f(x) = \frac{x^2 - 1}{x - 1}$ and $g(x) = \frac{|x^2 - 1|}{x - 1}$, $x \neq 1$. Then

- 1. both f and g have removable discontinuity at x = 1.
- 2. both f and g have jump discontinuity at x = 1.
- 3. f has a removable discontinuity at x = 1, while g has a jump discontinuity at x = 1.
- 4. f has a jump discontinuity at x = 1 while g has a removable discontinuity at x = 1.
- 35. What is the length of the interval on which the function $f(x) = x^3 6x^2 15x + 8$ is decreasing?
 - 1. 8
 - 2. 6
 - 3. 4
 - 4. 2
- 36. Let $f : [a, b] \longrightarrow \mathbb{R}$ be a monotonic function. Consider the following statements: (a) The function f obeys the maximum principle.
 - (b) The function f is Riemann integrable on [a, b].

Which of the above statements is(are) correct?

- 1. Only (a).
- 2. Only (b).
- 3. Both (a) and (b).
- 4. Neither (a) nor (b).

37. Consider the following:

(a) $\langle (a,b), (c,d) \rangle = ac - bd, (a,b), (c,d) \in \mathbb{R}^2$. (b) $\langle f(x), g(x) \rangle = \int_0^1 f'(x)g(x)dx$, where f(x), g(x) are polynomials over \mathbb{R} . Which of the above is(are) an inner product?

- 1. Neither (a) nor (b). 2. Both (a) and (b). 3. Only (a). 4. Only (b). 38. Let $T = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Then $-T^3 + 4T^2 + 5T - 2I$ is equal to 1. 10T + 4I. 2. 10T - 4I. 3. -10T - 4I. 4. -10T - 4I.
- 39. Let V be an infinite dimensional vector space over a field F. Consider the following statements: (a) Any one-one linear transformation from V to itself is onto.
 - (b) Any onto linear transformation from V to itself must is one-one.

Which of the above statements is(are) correct?

- 1. Both (a) and (b).
- 2. Only (a).
- 3. Only (b).
- 4. Neither (a) nor (b).
- 40. Let $P_n(\mathbb{R})$ be the set of all polynomials over \mathbb{R} of degree at most n. Let $T: P_n(\mathbb{R}) \longrightarrow P_{n+1}(\mathbb{R})$ be given by T(f(x)) = xf(x). Then
 - 1. T is one-one and onto linear transformation.
 - 2. T is an onto function but neither a linear transformation nor one-one.
 - 3. T is not onto but a one-one linear transformation.
 - 4. T is one-one but neither a linear transformation nor onto.
- 41. Let $(\mathbb{Z}, *)$ be a group, where a * b = a + b 2 and \mathbb{Z} is the set of integers. The inverse of a is
 - 1. a 6.
 - 2. a 4.
 - 3. 4 a.
 - 4. 6 a.
- 42. Let G be a group of even order. Suppose that exactly half of G consists of elements of order 2 and the rest forms a subgroup H of G. Which of the following statements is incorrect?
 - 1. H is a normal subgroup of G.
 - 2. order of H is even.
 - 3. H is abelian.
 - 4. [G:H] = 2.
- 43. Let G and K be finite groups such that |G| = 21 and |K| = 49. Suppose G does not have a normal subgroup of order 3. Let L be the set of all group homomorphism from G to K. Then the number of elements in L is
 - 1. 1.
 - 2. 3.
 - 3. 5.
 - 4. 7.
- 44. Let G be a finite group and $a \in G$ has exactly two conjugates. Suppose that $C(a) = \{x^{-1}ax \mid x \in G\}$ and $N(a) = \{x \in G \mid ax = xa\}$. Which of the following statements is incorrect?
 - 1. The number of elements in C(a) is a prime number.
 - 2. G is a simple group.

3. $N(a) \neq G$.

- 4. N(a) is a normal subgroup of G.
- 45. Let G be a finite group of order 385. Let H, K and L be p-Sylow subgroups of G for p = 5, 7, and 11, respectively. Which of the following statements is incorrect?
 - 1. K is a normal subgroup of G.
 - 2. L is a normal subgroup of G.
 - 3. HK is a non-abelian subgroup of G.
 - 4. G = HKL.
- 46. The remainder when 2020^{2020} is divided by 12 is
 - 1. 0.
 - 2. 2.
 - 3. 4.
 - 4. 8.

47. The smallest integer a > 2 such that 2|a, 3|(a + 1), 4|(a + 2), 5|(a + 3) and 6|(a + 4) is

- 1. 14.
- 2. 56.
- 3. 122.
- 4. 62.

48. Let $R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} | a, b \in \mathbb{Z} \right\}$ be a ring and $f : R \longrightarrow \mathbb{Z}$ be given by $\phi \left(\begin{pmatrix} a & b \\ b & a \end{pmatrix} \right) = a - b$. Which of the following statements is incorrect?

- 1. ϕ is a ring homomorphism.
- 2. $\ker\phi$ is a prime ideal but not maximal.
- 3. ker ϕ is a maximal ideal.
- 4. ϕ is surjective.
- 49. Consider the following statements:
 - (a) A polynomial is irreducible over a field F if it has no zeros in F.
 - (b) Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} .
 - (c) For any prime p, the polynomial $x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible over \mathbb{Q} .
 - Which of the above statements is(are) correct?
 - 1. Only (a) and (b).
 - 2. Only (a) and (c).
 - 3. Only (b) and (c).
 - 4. All of (a), (b) and (c).
- 50. Which of the following is a Euclidean domain?
 - 1. $\mathbb{Q}[x]/\langle x^3-2\rangle$.
 - 2. $\mathbb{Z}[x]$.
 - 3. $\mathbb{Q}[x,y]$.
 - 4. None of the above.